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Scaling behavior of stochastic minimization algorithms in a perfect funnel landscape

K. Hamacher and W. Wenzel
Institut für Physik, Universita¨t Dortmund, D-44221 Dortmund, Germany

~Received 7 August 1998!

We determined scaling laws for the numerical effort to find the optimal configurations of a simple model
potential energy surface~PES! with a perfect funnel structure that reflects key characteristics of the protein
interactions. Generalized Monte Carlo methods@Monte Carlo minimization and stochastic tunneling~MCM,
STUN!# avoid an enumerative search of the PES and thus provide a natural resolution of the Levinthal
paradox. We find that the computational effort grows with approximately the eighth power of the system size
for MCM and STUN, while a genetic algorithm was found to scale exponentially. The scaling behavior of a
derived lattice model is also rationalized.@S1063-651X~99!01701-8#

PACS number~s!: 87.10.1e, 87.15.By, 02.70.Lq
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Despite recent successes in the description of the mol
lar structure@1,2# and the folding process of small polype
tides@3,8#, theab initio prediction of the molecular structur
for larger proteins remains an elusive goal. Since sequen
techniques presently outperform available experimental te
niques for protein structure prediction~PSP! by a wide mar-
gin, the reservoir of sequenced proteins of unknown struc
represents an ever-growing pool of available, but as of
inaccessible, biological information. These observations m
tivate the search forab initio techniques to predict the mo
lecular structure of proteins from the amino acid seque
alone as one of the outstanding challenges to biolog
physics.

In one widely pursued theoretical approach to PSP,
native structure of the protein is sought as the global m
mum of an appropriate potential or free-energy function
the molecule@2,9–11# often including interactions with the
solvent in an approximate, implicit fashion. As the foldin
process in nature takes place on a long time scale (123

210 s), its direct simulation cannot be accomplished w
the presently available computational resources. It is th
fore desirable to determine the global minimum of the p
tential function without recourse to the folding dynamics.
has been argued that the resulting minimization problem
NP-hard@12–14#, i.e., that the number of low-energy loc
minima grows exponentially with the number of amino ac
residues. For this reason stochastic minimization proced
@15# are widely believed to be the most promising avenue
avoid an exponential increase of the numerical effort for
probabilistic ‘‘solution’’ to this problem. Since the availab
computational resources fall short by orders of magnitude
treat large proteins, it is important to obtain an order-
magnitude estimation of the numerical effort required. T
question can be answered by addressing the scaling
@16,17#:

nCPU~N!;ANa, ~1!

governing the dependence of the computational effort (nCPU)
on the system size (N).

In this investigation we determined the scaling expone
for four different global minimization methods, for a ver
simple, idealized model that reflects some key characteris
PRE 591063-651X/99/59~1!/938~4!/$15.00
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of the realistic problem. Our results demonstrate that
Levinthal paradox@18–20#, which arises from the enormou
number of low-lying conformations of the protein, is nat
rally resolved in the presence of a funnel structure. For s
models, stochastic thermodynamically motivated minimiz
tion techniques are generically able to avoid the expon
tially difficult enumerative search of the potential energy s
face ~PES! in favor of a power-law dependence. Ou
investigation of a novel stochastic tunneling techniqu
which removes the kinetic barriers between local minima
the PES, demonstrates that the scaling exponenta is deter-
mined by the thermodynamic complexity of the model, n
by the barrier height of the kinetic pathways. We find th
the computational effort of Monte Carlo–based metho
grows with approximately the eighth power of the syste
size. The genetic algorithm we investigated was the m
efficient technique for small systems, but its computatio
effort grew exponentially with system size. This findin
demonstrates that the investigation of the growth laws yie
a much stronger criterion for the selection of promising
gorithms than the comparison of different techniques
fixed system size. Finally, we provide an explicit demonst
tion that the scaling exponent of Monte Carlo techniques
a lattice model, which incorporates only the low-ener
physics of the continuum model, is consistent with its co
tinuum equivalent.

Because a detailed direct experimental characterizatio
the protein PES is difficult, there is ample controver
@5,16,6# regarding its structure and defining features. Ho
ever, in recent years an consensus regarding the existen
a ‘‘funnel structure’’ has emerged as the most importa
characteristic of the PES in the present paradigm for pro
folding @4,7,21#. In such a structure the global minimum ca
be reached via a multitude of pathways that traverse a
quence of increasingly well-formed intermediates in the fo
ing process. This observation implies a positive correlat
between the ‘‘distance’’ of a given local minimum from th
native state to the relative energy difference between the
minima. There is some evidence to suggest the existenc
different families of protein models within this paradig
@16,6# which may be characterized with different scalin
laws in their folding time. However, since the origins
these differences are presently not known, they are diffic
938 ©1999 The American Physical Society
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to incorporate into a simple continuum model that rema
amenable to treatment with present-day computational
sources. In order to determine a lower bound on the com
tational complexity, we therefore focus on the scaling la
governing the relaxation in a ‘‘perfect funnel’’ landscap
Such a landscape is characteristic of the family of ‘‘fast fo
ers’’ in the lattice models. In addition to the existence o
funnel structure, we demand that the PES reflects two o
characteristics of their realistic counterparts: a near-s
packing density in the vicinity of the global minimum an
the existence of two energy scales that are derived from
two relevant types of interactions in polypeptides. The fr
energy difference between low-energy protein conformati
is small ~10 kcal/mol!, arising from hydrogen-bonding, dis
persion, and solvent interactions. In contrast, the energy
riers separating such conformations are characterized
strong interactions (@100 kcal/mol), arising from covalen
bonding and steric repulsion. Simplifying significantly, th
strong interactions are responsible for the reduction of
phase space to a few energetically allowed ‘‘islands,’’ wh
are then differentiated in energy by the weaker interactio

MODEL

To obtain statistically relevant results for sufficient
large systems, we have investigated a very simple t
dimensional model, consisting of two types of particles t
interact pairwise with Lennard-Jones potentials of unit rad
such that like particles attract twice as strongly as unl
particles. The local minima of the model PES are slight d
tortions of a triangular lattice. There are exponentially ma
such minima, which are differentiated by the small ene
difference in the interaction strength of the two types
bonds, while the transition states between the local min
are characterized by the large energy scale of steric re
sion. The problem is easily shown to be NP-hard@13#. The
dynamical process by which a random initial condition d
velops to the minimal configuration can be visualized a
‘‘demixing’’ of the particles into two adjacent clusters o
particles of the same type—the ideal funnel structure of
global PES is thus obvious. The average distance any g
particle must travel from a random initial condition to i
position in the minimal cluster grows with the system siz
mirroring the ‘‘global’’ transformations required to fold th
protein from the coiled to the native state.

We stress that the similarity between this model and
PSP is purely abstract; there is no correspondence or m
ping between the coordinates of the particles and the coo
nates of atoms or clusters of atoms in the protein. Given
a ‘‘global’’ transformation is required, this minimizatio
problem is more difficult than the minimization of Lennar
Jones clusters studied previously@1#, but lacks the specific
one-dimensional constraints of various simple protein m
els that have recently been studied on the lattice@22#. A
lattice version of the model is easily derived by associat
each local minimum with its closest lattice configuration.

METHODS

As the basic technique we have investigated Monte C
with minimization~MCM! @23,24#, a generic and paramete
s
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free extension of simulated annealing@15#, which accelerates
the minimization process by allowing the configurations
relax locally before the Metropolis criterion is applied. Sin
only the energies of the local minima are compared to o
another, the simulation can proceed at a sufficiently low te
perature to differentiate the local minima. Our results for tr
runs using straightforward Monte-Carlo and simulated
nealing calculations and their recent generalizations@25,26#
showed that it would be impossible to obtain sufficien
good statistics forNCPU for large systems to estimate th
scaling behavior.

Second, we investigated a novel stochastic tunne
method~STUN! @27,28#, where a transformed PES,

Ẽ~xW !512e2g[E~xW !2E~xW0!] , ~2!

is used in the dynamical process~Fig. 1!. Since this transfor-
mation compresses the energy interval above the curre
optimal energyE(xW0) into the interval@0,1#, the high-energy
scale of the problem is effectively eliminated and the sim
lation self-adjusts its ‘‘effective temperature’’ as better a
better configurations are found.

Third, we have investigated a genetic algorithm~GA! @29#
as a radically different approach to stochastic global minim
zation. From a population of sizeP, we selectP/2 pairs of
configurations, each with probability

pi5
Emax2Ei

( j~Emax2Ej !
, ~3!

whereEi designates the energy of configurationi andEmax is
the maximal energy of the present population. Two new c
figurations are generated from each pair created by rando
exchanging consecutive subsets of coordinates between
two configurations~crossover!.

In addition, a random alteration of one coordinate is ma
with a small probability~mutation!. The latter step insures
the ergodicity of the method, but most novel configuratio
are generated by the crossover mechanism. As a refere

FIG. 1. Schematic one-dimensional PES~full line! and its
STUN effective potential~dashed line!, where the indicated mini-
mum E(xW0) is used as the reference. All energies ranging from
best present estimate to infinity are mapped to the interval@0,1#,
while all the energies of all lower minima are exponentially e
hanced.
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940 PRE 59K. HAMACHER AND W. WENZEL
we have gathered data for the multistart algorithm~MS!,
where a sequence of independent random initial condition
subject to local minimization.

RESULTS

As an unbiased measure of the efficiency of a particu
algorithmNCPU we adopted the average number of functi
evaluations (n90) that is required to locate the global min
mum with 90% probability. Given a set of parameters,
conducted between 100 and 500 independent runs. We
ristically determined a run-sizenmax(N) for which well over
90% of the runs were able to locate the global minimu
From these data we directly determined the fraction of r
necessary to locate the minimumn90,raw. Because of the
~asymptotic! time invariance of the minimization algorithms
the first-passage probabilityp(n) must obey an exponentia
distribution. The systematic error ton90,rawis therefore small;
the details of the data analysis will be published elsewh
@30#. For even system sizesN54216 we have optimized the
parameters of the various methods. The optimal parame
were found to be only slightly dependent on system size
could be extrapolated to larger system sizes where a
parameter optimization was too expensive@30#.

For just under a decade of system sizes~Fig. 2! we obtain
a power-law dependence of the computational effort with
system size with scaling exponents asaSTUN57.6(61.8)
and aMCM56.4(61.5) for the continuum andaMC/MCM
54.7(61.6) for the lattice model. The slight curvature of th
MCM data for large system size correlates with an increas
efficiency of the local minimization algorithm we used~inset
of Fig. 2!. Taking into account the exponents of the loc
minimization method, which scales almost linearly in t
range of system size investigated, we findaMC,lattice'aMCM
2aconj. gradient. For the GA and MS an exponential increa
of the computational effortn90,raw;ejN with system size was
observed, with exponentsjMS50.64 andjGA50.37

CONCLUSIONS

The demonstration of power-law growth of the compu
tional effort for the Monte-Carlo method~MCM! illustrates
the fact that the existence of a funnel structure is sufficien
avoid an exponentially expensive search of the PES. T
observation offers a natural resolution of the Levinthal pa
dox in the context of thermodynamically motivated, stoch
tic minimization methods: The exponential complexity in t
Levinthal paradox results from the assumption that the lo
minima appear as uncorrelated ‘‘holes’’ on an otherwise
PES. Obviously, the enumerative search of such a PE
unavoidable. The two necessary ingredients for a power-
scaling of the ‘‘folding time’’ are the existence of a hierarch
of the local minima and a method that can exploit this hi
archy by virtue of the correlation of successive configu
tions. The key difference between MS and MCM lies in t
lack of correlation between the configurations of the form
method and results in the expected exponential increas
the numerical effort for MS.

The equivalence of the exponents of MCM and the tu
neling method, which systematically eliminates kinetic b
riers in the minimization process, indicates that the prese
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and height of such barriers do not affect the scaling beha
of the method. It is therefore the thermodynamic complex
of the PES, as opposed to the presence of kinetic constra
which classifies the folding process here. This observa
raises the intriguing question whether the scaling expone
are different if the structure of the minima of the PES
altered in the transformation, such as in the diffusion eq
tion method@31#.

We note that the superiority of MCM over GA can on
be established in the context of a scaling analysis, as the
is the superior method for small system size. The reasons
the failure of the GA are presently ill-understood. Com
pounded with theN2 effort to evaluate a long-range pa
potential, the total minimization effort grows with the eigh
power of the system size, which places the protein struc
problem among the computationally hardest problems s
ied today. In the context of the recent discussion regard
the ‘‘foldability’’ @20,32,16# of different families of model
‘‘proteins,’’ our model is a natural ‘‘fast-folder’’ by virtue of
construction. It is therefore encouraging that our results o

FIG. 2. ~a! log-log plot of the average number of function eval
ationsn90,raw as a function of system sizeN for Monte Carlo with
minimization MCM ~circles! and the stochastic tunneling metho
STUN ~open squares! in the continuum~left scale! and for Monte
Carlo ~triangles! on the lattice~right scale! with power-law fits. The
inset shows the average number of function evaluations~in thou-
sands! for the minimization of a cluster ofN particles using the
conjugate gradient algorithm. To demonstrate that exponential
power-law scaling can be clearly distinguished, we show data
the exponentially scaling MS algorithm~full squares!. ~b! log-linear
plot of n90,raw (N) for the multistart method~MS! ~squares! and the
genetic algorithm~GA! ~circles! with exponential fits.
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PRE 59 941SCALING BEHAVIOR OF STOCHASTIC MINIMIZATION . . .
an explicit confirmation that the scaling behavior of the co
tinuum systems is consistent with the behavior of the deri
lattice model, while the numerical effort of the treatment
the latter is orders of magnitude less. It is further encour
ing that the scaling exponent for the continuum model agr
within the statistical error with estimations of the ‘‘folding
time’’ in polymer models@17# and some lattice models fo
proteins@16#, provided that the number of local minima vis
ited in the first-passage trajectory is proportional to the fo
ing time. We hope that our observations motivate the inv
tigation of scaling laws for more realistic models and a wid
variety of methods, when the computational resources
such investigations become available. The study of mod
that incorporate the one-dimensional connectivity of a p
tein molecule in the presence of various types of interac
o-
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will allow us to differentiate between the various mech
nisms that have been postulated to aid the folding proces
nature. Beyond the PSP problem, NP-hard minimizat
problems are ubiquitous in many scientific and industrial
eas@12# and it would be highly desirable to establish ‘‘un
versality classes’’ for such problems, which are characteri
by their scaling exponenta.
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